
Adapting Symbolic Linear Relaxation to the
Sigmoid Activation Function in Neurify

Andrew Burford
Department of Computer Science

Stony Brook University
Stony Brook, NY, USA

Abstract—In this paper we modify the symbolic linear relax-
ation algorithm used in the Neurify verification system to support
the sigmoid activation function. We use our modified version of
Neurify to evaluate a neural network used to tune the block device
readahead parameter in operating systems. This neural network
represents the very recent application of machine learning models
to tune operating system parameters, which is a new area that can
benefit from verification tools. We also evaluate the readahead
neural network using other state of the art property verification
tools. We show that our modified Neurify implementation yields
comparable performance to other neural network verifiers.

I. INTRODUCTION

Many recent advancements in the training and development
of neural networks paired with the continued improvement of
computational processing power has lead to a vast and diverse
range of machine learning applications. Many promising ap-
plications exist in safety critical systems where an incorrect
decision can have severe consequences. It is therefore neces-
sary to develop methods for verifying that neural networks will
produce acceptable decisions for an entire range of possible
inputs. For systems with very complex input spaces such as
image data used for image classification, a common property
to verify is local robustness, which ensures that the set of
inputs reachable by a small perturbation from a given input
all produce the same output. Even for applications outside
of safety critical systems, verification of this property can
increase our trust in relying on neural networks to behave as
expected.

One very recent application of neural networks is to tune
operating system level parameters [1]. Traditionally, simple
heuristics with well defined behavior and provable guarantees
are used for tuning OS parameters. In order to provide a
viable replacement for such algorithms, kernel level neural
networks must provide reliability and robustness as well. Due
to the novelty of this application, there is not a clear choice
for which activation function to use between layers. In the
work of Akgun et al., a classification neural network with a
sigmoid activation function was used to tune the block device
readahead parameter. Ideally, any neural network verification
technique should support as diverse a range of activation
functions as possible. Moving towards this goal, in this paper
we adapt an existing verification method used in the Neurify
software to handle the sigmoid activation function. We then
evaluate several properties of the readahead neural network
for a set of hand picked input spaces. We also evaluate

this network using other verification tools and compare their
efficiency and results.

II. RELATED WORK

An input that is very close to another input but classified
differently by a neural network is sometimes referred to as an
adversarial input. Initial approaches to dealing with the issue
of eliminating adversarial inputs and therefore increasing local
robustness involved modifications to the training of the neural
network [3]. The robustness was then measured by the success
rate of an algorithm attempting to find adversarial examples
for a given network. However, this type of approach is far
from a guarantee that adversarial examples do not exist. It
is possible that the network is just overfitting the types of
examples generated by the adversarial generation algorithm.
There are also no guarantees about the ability of the adversarial
generation algorithm to exhaustively search for adversarial
inputs.

There exist a wide variety of tools and techniques that
can fully verify the local robustness of a neural network.
Many verification tools focus primarily on neural networks
with the piece-wise linear ReLU activation function since it is
easier to model than completely non-linear functions such as
sigmoid. In fact, there exist algorithms capable of computing
the exact output set of a ReLU network. For example, W.
Xiang et al. [12] present the ExactReach algorithm which
operates by splitting up the input set into the union of a
set of convex polytopes. However, the number of polytopes
grows exponentially with both the dimension of each layer and
with the number of layers so this does not scale well. Many
solvers deal with this by overapproximating the reachable set
and using divide and conquer to search for inputs that violate
robustness. The Neurify [9] software that we modify in this
paper uses a technique called symbolic linear relaxation to
over approximate the output set and then a technique called
direct constraint refinement to search for inputs violating
robustness. In this paper, we extend the implementation of
Neurify’s techniques to work with the non-linear sigmoid act-
vation function. These techniques are built upon or otherwise
related to a range of methods one can use to over approximate
and search.

Symbolic linear relaxation builds upon symbolic interval
analysis which in turn builds upon arithmetic interval analysis.
Arithmetic interval analysis is used by W. Xiang et al. [11]

in their tool MaxSens. It consists of coming up with con-
crete upper and lower bounds for each node in a layer by
multiplying the upper and lower bounds of the previous layer
by the corresponding weights for each node. This corresponds
with propagating a hyperreptangle through the network, which
the ReLU function can be easily applied to by truncating the
parts of the rectangle with any negative dimensions. Tighter
bounds are achieved by breaking up the input space into many
small pieces. S. Wang et al. [10] introduced symbolic interval
analysis in their tool ReluVal. Instead of using concrete bounds
for each node, they compute symbolic bounds which are
expressed as linear combinations of the values of previous
nodes. If the bound for a node straddles the non-linear portion
of the ReLU function, it is concretized to actual numerical
upper and lower bounds (where the lower bound will be
zero). Neurify also uses symbolic bounds for each variable,
but instead of concretizing the bounds of nodes with a negative
lower bound and positive upper bound, they encode two
linear constraints to overapproximate the output of the ReLU
function. The inequalities for these constraints are expressed
symbolically just like the upper and lower bounds.

G. Singh et al. [8] used similar symbolic interval expressions
in the DeepPoly tool. Each node has a symbolic interval
referencing the values of previous nodes. However, their
algorithm uses an entirely different abstract domain which
consists of a single upper polyhedral constraint, a single lower
polyhedral constraint, and auxiliary concrete upper and lower
bounds for each variable. This is coupled with a set of abstract
transformers to propagate an input set through the network.

Robustness verification can also be approached as an opti-
mization problem, and some similar techniques can be used.
For example, Bunel et al. [2] present an optimization algo-
rithm which uses branch and bound to search through the
input space. This approach involves encoding the network
as a set of linear constraints with integer decision variables
used to represent the piece-wise linearity of ReLU activation
functions. This can be fed into any Mixed Integer Linear
Programming solver to find the minimum perturbation from
an input point which does not fall in the output domain.
The branch and bound technique is used when partitioning
the input domain into different sets and propagating each set.
If the overapproximation of a partition is contained within
the desired output set, it can be ignored. Otherwise, the
algorithm iteratively partitions into smaller input spaces until
a tight enough bound is reached. This is essentially the same
process used in ReluVal to split the input space using iterative
refinement. However, Neurify actually improves the splitting
operation in ReluVal’s branch and bound search by splitting
only the nodes in hidden layers where non-linearity occurs
instead of splitting the input domain.

Another approach that involves optimization is the Re-
luPlex [5] algorithm. This approach builds on top of the
simplex algorithm by maintaining an assignment of variables
that may violate some of the nonlinear ReLU constraints.
It then prioritizes fixing the violated ReLU constraints as
it optimizes the variables. ReluPlex was built to specifically

handle the ReLU function, but G. Katz et al. [6] extended
ReluPlex with the creation of Marabou which works any piece-
wise linear function. Marabou also increases efficiency by
adding support for a divide and conquer solving mode similar
to the framework introduced in Bunel’s branch and bound
paper. Other optimization algorithms can actually deal with
any arbitrary activation function, not just piecewise linear.
For example, the Duality [4] tool solves the Lagrangian dual
problem where the non-linear constraints are added to the
objective function. This allows the lagrangian of the objective
function to guide non-linear optimization for any kind of
activation function. For fully linear optimization, the solution
to the dual problem will equal the solution to the primal
problem. For the Lagrangian dual used in Duality, the solution
to the dual problem represents an upper bound to the maximum
perturbation, similar to the reachability overapproximation
algorithms. The issue with these optimization approaches is
that the high non-linearity in the function represented by the
neural network limits the efficiency of the algorithm.

III. ADAPTING NEURIFY

The two main pieces of the Neurify algorithm are symbolic
linear relaxation and direct constraint refinement. Symbolic
linear relaxation is a technique for propagating the input set
through the network, and direct constraint confinement is a
technique for splitting the input set into different subsets
so as to minimize overapproximation. In the original paper,
the ReLU activation function was exclusively considered for
both parts of the algorithm. First, we review the general
idea behind symbolic linear relaxation, and then we describe
the necessary changes to extend it to the sigmoid activation
function. We then describe the implications that a different
activation function have on direct constraint refinement.

A. Symbolic Linear Relaxation

Symbolic linear relaxation is a relatively small modifi-
cation to symbolic interval propagation. Symbolic interval
propagation is the technique of representing the upper and
lower bounds for each node in a neural network as a linear
combination of vectors in the input space. This way, we keep
track of dependencies between the nodes in each layer as we
propagate the upper and lower bounds. As a small example,
consider a network with two layers and two nodes in each

layer. The weights matrix between the layers is
[
1 −1
0 1

]
and

the bias vector is the zero vector. The ReLU function is applied
after the weights matrix. The nodes in the first layer are labeled
xi where x1 ∈ [−1, 2] and x2 ∈ [0, 3]. This corresponds
to a hyperrectangle input space. After propagating through
the weights matrix but before applying the ReLU function,
we label the nodes yi. Each yi has a linear combination of
xi variables to represent an upper bound and another linear
combination of xi variables to represent a lower bound. Since
we haven’t had to introduce any overapproximation yet, these
upper and lower bounds are the same. Note that you can
interpret each bound as a zonotope where the generator vectors

Fig. 1. This rectangle represents the overapproximation that happens when a
node is concretized during symbolic interval propagation

are the columns of the matrix of coefficients and the free
variables are the input variables. For example, the upper bound
for yi is y1 = x1−x2 and y2 = x2 so the matrix of coefficients

is
[
1 −1
0 1

]
(the same as the weights matrix).

In order to propagate through the ReLU function we handle
the upper bound and lower bound zonotopes separately. We
first compute concretized upper and lower bounds for each
node in the zonotope. This is a simple optimization to compute
because the free variables are just the hyperrectangle input
space. So for the upper bound of y1 we compute the upper
bound by taking the maximum of x1 = 2 and subtracting
the minimum of x2 = 0, leaving us with 2. Similarly, we
take the minimum of x1 = −1 and subtract the maximum of
x2 = 3 to get a lower bound of y1 = −4. These concretized
bounds of y1 ∈ [−4, 2] mean that y1 straddles the non-convex
portion of the ReLU function so we must overapproximate.
Standard symbolic interval propagation overapproximates by
saving these bounds as the output of the ReLU function,
dropping the dependencies of this node on the previous layer.
This is shown pictorally in Figure 1.

Symbolic linear relaxation tries to improve this by instead
using a parallelogram relaxation of the ReLU function as
depicted in Figure 2. This is where the upper and lower
bound zonotopes will differ. For the upper bound zonotope, we
compute the upper bound constraint of y1 using the formula
y = u

u−l (x− l) where u and l represent the concretized upper
and lower bounds respectively. If we represent the output
of the ReLU function as zi, we end up with the equation
z1 = 2

6 (y1 + 4) for our upper bound zonotope. The lower
bound can be computed with the equation y = u

u−lx so
the equation for the lower bound zonotope is z1 = 2

6y1. y1
can be expanded so that z1 remains a linear combination of
xi variables. See Figure 3 for the final upper and lower
bound zonotopes. Note that if the concretized bounds do
not straddle the non-convex portion of the ReLU function,
no overapproximation is necessary. For example, z2 remains
unchanged after the ReLU function because the lower bound
was ≥ 0. If the upper bound is ≤ 0, the variable can be set
to zero which is equivalent to setting its row in the coefficient
matrix to all zeroes.

Also note that if the input space were an H-polytope instead

Fig. 2. This is a visualization of the parallelogram relaxation used by Neurify
to overapproximate the ReLU function. The upper bound line y = u

u−l
(x−l)

is used to form the upper bound zonotope and the lower bound line y = u
u−l

x
is used for the lower bound zonotope.

Fig. 3. This is a visualization of an example neural network with symbolic
interval propagation used to propagate the input space through a weights
matrix and ReLU function.

of a hyperrectangle, we would be maintaining upper and lower
bound star sets instead of zonotopes. The actual reachable set
at any given step can be thought of as the convex hull of the
upper and lower bound star sets. This is visualized in Figure
4.

B. Extension to Sigmoid

Symbolic linear relaxation works because it computes a
single line for the upper bound and a single line for the lower
bound of each node. In order to compute such linear bounds
for any interval on the sigmoid function, we must break things
up into cases.

In the first case, both upper and lower bounds are greater
than zero. Here, the derivative of the sigmoid function is
monotonically decreasing, so the lower bound can be a line
connecting the two output points of the sigmoid function. The
upper bound is the same line but shifted up to be tangent to the
sigmoid function. This case is displayed in Figure 5. Similar
logic can be followed for computing upper and lower bounds
when both bounds are less than zero.

For the case where the lower bound is less than zero but the
upper bound is greater than zero, we must further subdivide
into two cases. Consider just the lower bound because the
upper bound can be computed symmetrically. In the first case,
the slope between the two output points is greater than the

Fig. 4. This is a visualization of the output of the example neural network in
Figure 3. The red paralellogram represents the output after the first linear layer
and the blue parallelograms represent the upper and lower bound zonotopes
after propagating through the ReLU function. The actual reachable set can be
interpreted as the convex hull of these two zonotopes.

Fig. 5. Symbolic Linear Relaxation applied to the sigmoid function

derivative at the lower bound. Here we set the lower bound
line to have slope equal to this derivative and pass through
the lower bound output point. This choice allows our overap-
proximation to remain a strict subset of the overapproximation
that results from symbolic interval propagation. If the slope of
this derivative is greater than the slope between the two output
points, we set the lower bound line to the line connecting the
two output points. See Figure 6 and 7 for examples of both
cases.

C. Implications for Direct Contraint Refinement

Direct constraint refinement is a novel approach introduced
in Neurify for splitting up the input set into smaller sets that
are verified independently. In order to choose how to split the
input space, direct constraint refinement looks at nodes within
the network that cause overapproximation by straddling the
non-convex portion of the ReLU function. Within this set of
nodes, it chooses the node with the largest output gradient.
This gradient is a measure of how much effect this node has

Fig. 6. Symbolic Linear Relaxation applied to the sigmoid function

Fig. 7. Symbolic Linear Relaxation applied to the sigmoid function

on the output. It is computed during propagation through the
network and for symbolic linear relaxation, it is simply equal
to the slope of the overapproximated bounds or the slope of
the ReLU function. So for any node whose concretized bounds
required overapproximation of the ReLU function, the gradient
is u

u−l .
Once a node is selected, a half space constraint is added to

the input space. On one side of this halfspace, the chosen node
should have a concretized upper bound ≤ 0. On the other side
of the halfspace, the chosen node should have a concretized
lower bound > 0. In both cases, no overapproximation of
the ReLU function is required. This means that if it performs
enough splitting, the analysis will approach exact analysis as
fewer and fewer nodes require any overapproximation. Neurify
recursively performs this splitting on each smaller input set
until it is able to verify the property or find a counter-example.

For the sigmoid activation function, every single node has
some amount of overapproximation as long as the upper and
lower bounds are not completely tight since every piece of
the function is non-linear. This means we must consider all
nodes as potential nodes to split on, not just the ones that
straddle zero. We still use the same influence analysis to
select a node since the influence analysis is independent of
the type of activation function. The gradient of a node is
just equal to the slope of the line used to overapproximate

the sigmoid function. Once we have a selected node, we
use the same technique as Neurify to split the input space
in two, but instead of using zero as a boundary point, we
use the midpoint of the upper bound and lower bound. For
example, consider a node with bounds y ∈ [0, 4]. The bounds
of sigmoid(y) are ∈ [0.5, 0.982]. Its gradient will be the slope
of the line connecting the two points since this is the slope used
for overapproximation (sigmoid(u)−sigmoid(l)

u−l). If the linear
combination used to represent y is y = x1+2x2−x3+1, then
the following half space constraint would be added to the input
space to split on this node: y ≤ 2. This would be represented

as x1 + 2x2 − x3 − 1 ≥ 0 or equivalently

 1
2
−1

x − 1 ≤ 0.

The y > 2 constraint would be added to form the other input
space.

IV. EVALUATION OF READAHEAD NETWORK

We evaluate our modified Neurify algorithm by using it
to verify properties about a neural network used to select an
optimal readahead value. A well known problem in filesystem
and operating system tuning is the assignment of an optimal
readahead value. When a page from a file is read by an
application, the readahead value tells the operating system
how many additional pages past this one to also request from
disk and store in the page cache. Since many applications
request data sequentially, reading additional data past what
was requested by the application can improve performance
since future page requests can likely be loaded straight from
cache.

The standard Linux kernel sets the readahead to a static
value that works pretty well across a wide range of workloads.
The readahead network we will verify properties of is a
feed forward classification network with sigmoid activation
functions. It classifies the application currently running as one
of four different types of workloads and sets the readahead
value to the optimal value for that workload. The optimal value
for each workload type was experimentally determined by
running examples of each workload with different readahead
values.

A. Choice of Input Space

The readahead neural network could be evaluated for local
robustness given a handful of ground truth input data points.
However, an understanding of the trends in the input data can
lead one to hypothesize about a range of possible properties
one might want this network to satisfy. More complex prop-
erties with larger input spaces also create better benchmarks
for comparing the Neurify verification algorithm with other
network verification algorithms. Below, we discuss the input
features of this network, and we choose two interesting prop-
erties to verify about it.

There are five features calculated every second by the
readahead neural network based on values gathered from
tracepoints placed in the kernel. These tracepoints deal with
page accesses for files in the filesystem. Each tracepoint

0 1 2 3 4
Mean Absolute Page Index Differences

1.0

0.5

0.0

0.5

1.0

Re
ad

ah
ea

d
Va

lu
e

Mean Absolute Page Index Differences vs. Readahead Value
Input bounds to verify
readrandom
readrandomwriterandom
readseq
readreverse

Fig. 8. The blue rectangle represents the bounds of a hyperrectangle
for which all interior points should be classified as either readrandom or
readrandomwriterandom. Note that the units on both axes are Z-scores based
on the distribution of the entire training data set.

involves a page index number within a file. The five features
fed into the network are the number of tracepoints called, the
mean page index, the standard deviation of page indices, the
mean absolute difference between page indices of consecutive
tracepoint calls, and the current readahead value.

There exist complex, non-linear relationships between com-
binations of these variables, hence the necessity of utilizing
machine learning for classification. However, we can catego-
rize the output classes in pairs with similar features. One pair
of workload classes with similar features are read sequential
and read reverse. These classes are intended to represent
an application that reads all data in a file sequentially in
ascending page index order and an application that reads all
data sequentially in reverse order, respectively. The other pair
of workload classes are readrandom and readrandomwriteran-
dom. The readrandom workload randomly picks offsets in a
file to read from and readrandomwriterandom does the same
thing except it also writes data to random points in a file.

By inspecting histograms and scatterplots of combinations
of the input data feature variables, we identified two properties
that the network should exhibit. In a scatter plot of readahead
and mean absolute page index differences, there is a clear
divide between clusters of readsequential and readreverse data
points and clusters of readrandom and readrandomwriteran-
dom data points as the readahead value decreases. In Figure
8, we highlight a rectangle representing the input space
that should be classified as either readrandom or readran-
domwriterandom and another rectangle that should be classi-
fied as readsequential or readreverse. For the other dimensions
of this input space, we simply choose the minimum and
maximum values for the data points in these classes because
the classification should stay within these pairs of classes
regardless of the other input features.

Another scatterplot with some clear clustering is the plot

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Tracepoint Calls

1.0

0.5

0.0

0.5

1.0

Re
ad

ah
ea

d
Va

lu
e

Tracepoint Calls vs. Readahead Value

Input bounds to verify
readrandom
readrandomwriterandom
readseq
readreverse

Fig. 9. The blue rectangle represents the bounds of a hyperrectangle
for which all interior points should be classified as either readrandom or
readrandomwriterandom. Note that the units on both axes are Z-scores based
on the distribution of the entire training data set.

of the number of tracepoint calls vs. the readahead value.
As readahead increases, the number of tracepoint calls for
readrandom and readrandomwriterandom workloads steadily
increases. In Figure 9, we highlight a rectangle for each
workload pair which should be classified as that pair.

In a classification network, the output layer consists of one
node for each class and the class with the largest value is
selected as the output class. The constraint that either one
of two output classes have the largest value is a non-convex
output space, so we chose the tighter constraint that both
workloads in one pair are ranked higher than both workloads in
the other pair. If x ∈ R4 is the output vector, we can represent
the constraint that the first pair of nodes be ranked higher than
the last two using an H-Polytope like so:
−1 0 1 0
−1 0 0 1
0 −1 1 0
0 −1 0 1

x ≤

0
0
0
0

B. Results

The hyperrectangle proposed above to encapsulate all read-
random and readrandomwriterandom data within a range of
mean absolute page index differences does not uphold the
property that the random pair of workloads are both ranked
higher than the readseq and readreverse pair of workloads. We
also tried verifying a smaller hyperrectangle, where the radii
in all dimensions except mean absolute page index differences
and readahead are set to zero, and an average is used for the
center of the hyperrectangle in other dimensions. This also
violates the property.

The hyperrectangle around a cluster of readrandom and
readrandomwriterandom data points with a similar number
of tracepoint calls also violates the property. Even when
projecting the other dimensions to zero as explained above,
the property remains violated.

V. COMPARISON TO OTHER VERIFICATION ALGORITHMS

We used an implementation of the MaxSens [11] algo-
rithm provided by C. Liu [7] to verify the same properties.

Tool Mean Diffs (s) Tracepoint Calls (s)
Neurify 150.4 154.2

MaxSens 22.3 32.2
The tracepoint calls property took 3 iterations of the Neurify

algorithm while the mean diffs property took just 1 iteration.
Given the small difference in time taken to find a counterex-
ample for these properties, this would suggest that the direct
constraint refinement is effective at breaking up the domain
into subsets that are much easier to calculate. This could also
mean there is a high overhead for the first iteration of the
algorithm.

Overall, our modified Neurify is definitely slower than
MaxSense but it is still within an order of magnitude of the
performance.

VI. LIMITATIONS AND FUTURE WORK

Symbolic linear relaxation requires providing a single upper
and lower bound linear constraint for a given activation
function, so in theory this could be extended to any activation
function. In addition, the implementation of our extension to
the Neurify algorithm is based off an implementation provided
by C. Liu [7] which was intended for pedagogical purposes.
This means that the choice of language and code design
could be significantly redesigned for speed rather than human
readability and clarity.

Another type of optimization employed recently in neural
network verification algorithms is optimizing the choice of
linear bounds to minimize future overapproximation. Our
upper and lower bounds for the sigmoid function attempt
to minimize overapproximation, but alternative choices could
potentially prevent even more overapproximation later on in
future layers. This requires a more advanced analysis, but in
theory it could readily be applied to the Neurify algorithm.

There is also the question of how to split up the domain
during direct constraint refinement. For the ReLU activation
function, the choice is easy because you simply split around
boundary of the two linear segments of the function. However,
there is not an obvious best choice for the sigmoid function.
We simply chose bounds that allow our modifications to pro-
vide strictly smaller overapproximations than the concretized
bounds that ReluVal would provide.

While this paper helps apply the field of neural network
verification to the recent application of machine learning
to tuning operating systems parameters, more work can be
done to formalize better properties to verify and to modify
the network so that these properties are actually upheld. We
attempted to prove properties that one pair of classes ranked
above another pair of classes, but ideally we wanted to prove
that either class in one pair was the highest ranked class. If
Neurify were extended to check for results in a non-convex
output space or at least the union of convex output spaces then
we could verify more general properties.

VII. CONCLUSION

In this paper, we introduce a modification to the Neu-
rify algorithm to allow it to support the sigmoid activation
function. In order to test our implementation, we evaluate
several properties of a feed forward neural network used in
the recent application of machine learning to tune operating
system parameters. We found that the properties we wanted to
verify were violated. This was then confirmed using alternative
neural network verification algorithms that already support
the sigmoid activation function. Specifically, we compared the
performance of our modified Neurify implementation to an
implementation of the MaxSens algorithm. Our implementa-
tion was significantly slower in finding counter examples to
our input properties, but only by one order of magnitude.

REFERENCES

[1] I. U. Akgun, A. S. Aydin, A. Shaikh, L. Velikov, and E. Zadok. A
machine learning framework to improve storage system performance.
HotStorage ’21, page 94–102, New York, NY, USA, 2021. Association
for Computing Machinery.

[2] R. Bunel, I. Turkaslan, P. H. S. Torr, P. Kohli, and M. P. Kumar.
Piecewise linear neural network verification: A comparative study.
CoRR, abs/1711.00455, 2017.

[3] N. Carlini and D. A. Wagner. Towards evaluating the robustness of
neural networks. 2017 IEEE Symposium on Security and Privacy (SP),
pages 39–57, 2017.

[4] K. Dvijotham, R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli.
A dual approach to scalable verification of deep networks. CoRR,
abs/1803.06567, 2018.

[5] G. Katz, C. W. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer.
Reluplex: An efficient SMT solver for verifying deep neural networks.
CoRR, abs/1702.01135, 2017.

[6] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. L. Dill, M. J. Kochenderfer, and
C. Barrett. The marabou framework for verification and analysis of
deep neural networks. pages 443–452, 2019.

[7] C. Liu, T. Arnon, C. Lazarus, C. W. Barrett, and M. J. Kochenderfer.
Algorithms for verifying deep neural networks. CoRR, abs/1903.06758,
2019.

[8] G. Singh, T. Gehr, M. Püschel, and M. Vechev. An abstract domain for
certifying neural networks. Proc. ACM Program. Lang., 3(POPL), Jan.
2019.

[9] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Efficient formal
safety analysis of neural networks. CoRR, abs/1809.08098, 2018.

[10] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal
security analysis of neural networks using symbolic intervals. CoRR,
abs/1804.10829, 2018.

[11] W. Xiang, H. Tran, and T. T. Johnson. Output reachable set estimation
and verification for multi-layer neural networks. CoRR, abs/1708.03322,
2017.

[12] W. Xiang, H. Tran, and T. T. Johnson. Reachable set computation and
safety verification for neural networks with relu activations. CoRR,
abs/1712.08163, 2017.

	Introduction
	Related Work
	Adapting Neurify
	Symbolic Linear Relaxation
	Extension to Sigmoid
	Implications for Direct Contraint Refinement

	Evaluation of Readahead Network
	Choice of Input Space
	Results

	Comparison To Other Verification Algorithms
	Limitations and Future Work
	Conclusion
	References

